Crystal Structure of the Bis-(5,5'diethylbarbiturato)bispyridine Complex of Copper(II)

By M. R. Caira, G. V. Fazakerley, P. W. Linder and L. R. Nassimbeni
Department of Chemistry, University of Cape Town, South Africa

(Received 16 July 1973; accepted 17 July 1973)

Abstract

The crystal structure of the bis-(5,5'-diethylbarbiturato)bispyridine complex of copper(II) has been determined by Patterson and Fourier methods and refined by full-matrix least-squares computations to a final R of 0.036 for 1236 independent reflexions with measurable intensities. The monoclinic unit cell, space group $P 2_{1} / c$, with $a=11 \cdot 235, b=9.958, c=12.624 \AA$ and $\beta=102 \cdot 6^{\circ}$, contains two centrosymmetric molecules. The copper atom is bonded to the deprotonated nitrogen atoms of the barbital anions and the nitrogens of the pyridines, with bond lengths $\mathrm{Cu}-\mathrm{N}$ of 1.983 (5) and 2.032 (5) \AA respectively. There is evidence of off-the- z-axis coordination by oxygen atoms from the barbital moieties, which have a $\mathrm{Cu}-\mathrm{O}$ distance of 2.722 (5) \AA. The molecules are joined by relatively short ($2.86 \AA$) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Introduction

We report the first determination of the crystal structuie of a complex of copper(II) with a drug-active barbiturate as one of the ligands. Various complexes of transition metals with barbiturates have been prepared as they are importarit in the detection and identification of the drugs. They have the general formula M (II) (barb) ${ }_{2} \mathrm{~L}_{2}$, where M is a transition metal, barb is the anion of a substituted barbituric acid and L is an organic base, usually pyridine.

Levi \& Hubley (1956) have studied the reaction of copper with twelve different barbiturates in the presence of pyridine and, on the basis of infrared spectral data, have suggested that the barbiturate ligand is bound to the copper through an oxygen atom. More recently, the molecular structures of two complexes $\mathrm{M}(\mathrm{II})$ (barb) $)_{2}$ (imidazole $)_{2},(\mathrm{M}=\mathrm{Co}$ and Zn$)$, have been elucidated by X-ray diffraction (Wang \& Craven, 1971) and this study showed that, in both complexes, the donor atom in the barbiturate anion is a deprotonated nitrogen atom. The coordination environment of the metal atoms Co and Zn in these complexes is tetrahedral, each molecule possessing twofold crystallographic symmetry. The present X-ray analysis was undertaken in order to determine the molecular structure of the copper complex in which square-planar coordination was expected. It was also desirable to establish whether the barbiturate donor atom is N or O in the copper complex. Hydrogen bonding has been a prominent feature in the crystal structures of barbiturates, their salts (Berking \& Craven, 1971; Craven, Vizzini \& Rodrigues, 1969; Berking, 1972) and in the complexes M(II) (barb) $)_{2}$ (imidazole) ${ }_{2}$ (Wang \& Craven, 1971).

Experimental

Single crystals of the complex were obtained in the following manner: dilute aqueous solutions of $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$, pyridine and sodium barbital were
mixed in the molar ratio $1: 2: 2$. The final $p \mathrm{H}$ of the mauve solution was $7 \cdot 2$. The crystals grew as small hexagonal plates. Microanalysis showed that they had the composition $\mathrm{CuC}_{26} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{6}$ corresponding to the formulation $\mathrm{Cu}(\mathrm{II})\left(5,5^{\prime} \text { diethylbarbiturato }\right)_{2}$ (pyridine) $)_{2}$. A single crystal of dimensions $0.25 \times 0.225 \times 0.35 \mathrm{~mm}$ was selected for the X-ray investigation. The lattice

Fig. 1. The molecular structure of the complex. The superscripted atoms are centrosymmetrically related to the corresponding atoms without superscripts.

Fig. 2. The environment of the copper atom showing the 'off-the-z-axis' coordination involving $\mathrm{O}(1)$ and $\mathrm{O}\left(1^{1}\right)$.
constants were obtained from a least-squares analysis of the settings of 25 reflexions measured on a fourcircle diffractometer with Mo $K \alpha$ radiation ($\lambda=$ $0.7107 \AA$). The crystal data are listed in Table 1. The crystal density was determined with a density-gradient column containing the components m-xylene ($\varrho=0.86$ $\mathrm{g} \mathrm{cm}^{-3}$) and carbon tetrachloride ($\varrho=1 \cdot 60 \mathrm{~g} \mathrm{~cm}^{-3}$), which was precalibrated with aqueous caesium chloride solutions.
The intensities were collected on a Philips PW 1100 computer-controlled four-circle diffractometer operating in the ω-scan mode (scan width $=0 \cdot 9^{\circ}$, scan speed $=$ $0.03^{\circ} \mathrm{sec}^{-1}$).
With Zr -filtered Mo $K \alpha$ radiation, 1462 reflexions up to $2 \theta=40^{\circ}$ were measured. Throughout the data collection, three reference reflexions were recorded after every 56 measured reflexions. The intensities of the standard reflexions remained constant to within $\pm 2 \%$ throughout the run. Of the 1462 reflexions counted, 101 were systematically absent. Adopting the criterion of $I_{\text {rel }}>2 \sigma\left(I_{\text {rel }}\right)$ for an observed reflexion, 116 reflexions were omitted as unobserved. A further nine reflexions were redundant due to space-group equivalence, leaving 1236 unique reflexions, all of which were employed in the structural determination. The data were corrected for Lorentz-polarization effects. For the crystal selected, μR varied between 0.10 and 0.15 and the maximum variation in the corresponding A^{*} values was between 1.18 and 1.28 for all θ values. This was deemed too small to warrant absorption corrections, which were therefore neglected.

Solution and refinement of the structure

With the copper atom at the unit-cell origin, the threedimensional Patterson vector map resembles the elec-

Table 2. Fractional atomic coordinates and thermal parameters and their e.s.d.'s for $\mathrm{Cu}(\mathrm{II})$ $\left(5,5^{\prime}-\text { diethylbarbiturate }\right)_{2}(\text { pyridine })_{2}$
(a) Heavy atoms. Coordinates are $\times 10^{4}$. Thermal parameters are of the form

$$
T=\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{23} k l+2 \beta_{31} 1 h\right) \times 10^{4}\right]
$$

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{23}	β_{31}
Cu	0	0	0	22 (1)	47 (1)	18 (1)	-9 (1)	3 (1)	-2 (1)
C(1)	1304 (6)	1941 (7)	-770 (6)	40 (6)	75 (8)	31 (6)	-6 (6)	6 (5)	- 7 (6)
C(2)	3180 (6)	3176 (6)	-3 (5)	50 (7)	47 (8)	36 (5)	- 5 (6)	9 (5)	3 (5)
C(3)	2087 (5)	1705 (6)	1153 (5)	31 (6)	50 (8)	27 (6)	-2 (5)	7 (5)	-12(5)
C(4)	3038 (6)	2791 (7)	1138 (5)	47 (6)	86 (9)	25 (5)	-32(6)	-9(4)	-1(5)
C(5)	2640 (8)	4097 (8)	1641 (6)	149 (11)	85 (10)	45 (6)	-59(9)	28 (7)	-25 (6)
C(7)	4278 (7)	4656 (8) 2313 (10)	1126 (7) 1796 (6)	132 (10)	68 (10)	117 (9)	$5(8)$ -49	71 (8)	-39 (8)
C(8)	4743 (7)	1066 (10)	1362 (8)	63 (7)	181 (14)	50 (6)	-49 (9)	-22 (6)	43 (8)
C(9)	-1009 (6)	2023 (7)	1264 (6)	51 (7)	146 (13)	150 (10)	18 (8)	6 (7)	78 (10)
$\mathrm{C}(10)$	-1813 (7)	2989 (8)	1503 (6)	49 (7)	96 (10)	41 (6)	0 (6)	10 (5)	-6 (6)
C(11)	-2854 (7)	3253 (7)	748 (7)	63 (8)	111 (10)	54 (6)	8 (7)	24 (6)	-20 (7)
C(12)	-3070 (6)	2569 (8)	- 226 (7)	63 (8)	74 (9)	98 (8)	11 (7)	41 (7)	0 (7)
C(13)	-2230 (6)	1644 (7)	-427 (5)	44 (7)	78 (9)	77 (7)	8 (7)	6 (5)	16 (7)
N(1)	1294 (4)	1390 (5)	226 (4)	46 (7)	70 (9)	47 (6)	-2 (7)	7 (5)	-6 (6)
N(2)	2234 (5)	2819 (5)	-844 (4)	25 (5)	57 (6)	20 (4)	-16 (4)	2 (4)	-7 (4)
N(3)	-1217 (4)	1366 (5)	323 (4)	43 (5)	94 (7)	15 (4)	-31(5)	-1 (4)	10 (4)
O(1)	530 (4)	1638 (5)	-1562 (4)	32 (5)	61 (6)	33 (4)	1 (5)	6 (4)	-13 (5)
$\mathrm{O}(2)$	4040 (4)	3789 (5)	-171 (4)	56 (4)	136 (7)	19 (3)	-41 (5)	-15 (3)	-5 (4)
$\mathrm{O}(3)$	2031 (4)	1162 (4)	2009 (3)	67 (5)	104 (6)	58 (4)	-46 (5)	13 (3)	28 (4)
				67 (5)	78 (5)	14 (3)	-16 (4)	11 (3)	5 (4)

Table 2 (cont.)
(b) Fractional atomic coordinates $\left(\times 10^{3}\right)$ and their e.s.d.s' for the hydrogen atoms.

	x	y	z
$\mathrm{H}(2)$	$231(5)$	$316(7)$	$-154(5)$
$\mathrm{H}(5)$	$269(7)$	$385(8)$	$236(6)$
$\mathrm{H}(52)$	$336(7)$	$472(7)$	$170(6)$
$\mathrm{H}(71)$	$414(6)$	$216(8)$	$257(6)$
$\mathrm{H}(72)$	$480(6)$	$312(8)$	$184(6)$
$\mathrm{H}(61)$	$73(7)$	$401(8)$	$125(7)$
$\mathrm{H}(6)$	$124(7)$	$556(7)$	$159(7)$
$\mathrm{H}(63)$	$132(7)$	$464(7)$	$29(7)$
$\mathrm{H}(81)$	$478(8)$	$116(8)$	$71(7)$
$\mathrm{H}(82)$	$549(7)$	$79(8)$	$184(7)$
$\mathrm{H}(83)$	$424(7)$	$25(8)$	$155(7)$
$\mathrm{H}(9)$	$-26(6)$	$170(7)$	$184(5)$
$\mathrm{H}(10)$	$-156(6)$	$341(7)$	$223(6)$
$\mathrm{H}(11)$	$-334(6)$	$382(7)$	$94(6)$
$\mathrm{H}(12)$	$-381(6)$	$275(7)$	$-77(6)$
$\mathrm{H}(13)$	$-237(6)$	$108(7)$	$-114(5)$

tron density map. However, since the Patterson map had $P 2 / m$ symmetry, care was exercised in selecting unique peaks from their corresponding nirror images. Nine atomic positions were found by analysis of the Patterson function and all the remaining non-hydrogen atoms were locited on inspection of a subsequent Fourier synthesis. Scattering factors for the copper, carbon, nitrogen, oxygen and hydrogen atoms were those obtained from the HFS model (Hanson, Herman, Lea \& Skillman, 1964). The copper was treated as Cu^{0} and the anomalous dispersion correction ($\Delta f^{\prime}=0.3$ for Mo $\mathrm{K} \alpha$ radiation) was applied to the scattering curve. The positional and anisotropic temperature factors of all the non-hydrogen atoms were refined by the method of least squares ($O R F L S$: Busing, Martin \& Levy, 1963), each of the 1236 reflexions being assigned unit weight. In the last cycle of non-hydrogen atom refine-

Table 3. Observed and calculated structure factors
The values listed are $10 F_{o}$ and $10 F_{c}$.

ment, the average e.s.d. in the positional and anisotropic temperature factors was about fifty times the average parameter shift. All the hydrogen atoms were located from subsequent difference syntheses and were assigned the temperature factors of the atoms to which they were bonded. After the last refinement cycle, in which the hydrogen atomic positions wete varied, the average e.s.d. in these parameters was about ten times the average parameter shift. The last cycle of refinement yielded an R of 0.036 . The final atomic positional and thermal parameters are listed in Table $2(a)$ and (b).

Fig. 3. Relevant bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for the barbital moiety in $\mathrm{Cu}(\mathrm{II})(\text { barb })_{2}$ (pyridine) ${ }_{2}$ (upper number) and in $\mathrm{Zn}(\mathrm{II})(\text { barb })_{2}$ (imidazole) $)_{2}$ (lower number).

As a final check of the correctness of the structure, a difference synthesis with the structure factors calculated in the last cycle of the refinement was computed. This map was practically featureless. The observed and calculated strueture factors are listed in Table 3.

Description of the structure and discussion

Intramolecular bond distances and angles with their e.s.d.'s from the least-squares refinement are listed in Tables 4 and 5 respectively. These parameters were calculated with the $X-R A Y$ (1972) program system. Table 6 lists computed least-squares planes with their equations and the distances of various atoms from these planes. The molecular structure is shown in Fig. 1 (ORTEP: Johnson, 1965).

Table 4. Intramolecular bond lengths and their e.s.d.'s (\AA)

$\mathrm{Cu}-\mathrm{N}(1)$	$1.983(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.38(1)$
$\mathrm{Cu}-\mathrm{N}(3)$	$2.032(5)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.38(1)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.374(9)$	$\mathrm{N}(2)-\mathrm{H}(2)$	$0.97(6)$
$\mathrm{C}(3)-\mathrm{N}(1)$	$1.345(8)$	$\mathrm{C}(9)-\mathrm{H}(9)$	$1.04(6)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.381(9)$	$\mathrm{C}(10)-\mathrm{H}(10)$	$1.00(7)$
$\mathrm{C}(2)-\mathrm{N}(2)$	$1.376(8)$	$\mathrm{C}(11)-\mathrm{H}(11)$	$0.86(7)$
$\mathrm{C}(9)-\mathrm{N}(3)$	$1.332(9)$	$\mathrm{C}(12)-\mathrm{H}(12)$	$0.97(6)$
$\mathrm{C}(13)-\mathrm{N}(3)$	$1.342(8)$	$\mathrm{C}(13)-\mathrm{H}(13)$	$1.04(7)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.212(8)$	$\mathrm{C}(5)-\mathrm{H}(51)$	$0.93(7)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.200(9)$	$\mathrm{C}(5)-\mathrm{H}(52)$	$1.01(8)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.222(8)$	$\mathrm{C}(7)-\mathrm{H}(71)$	$1.03(8)$
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.532(9)$	$\mathrm{C}(7)-\mathrm{H}(72)$	$0.98(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.523(9)$	$\mathrm{C}(6)-\mathrm{H}(1)$	$1.04(8)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.56(1)$	$\mathrm{C}(6)-\mathrm{H}(62)$	$1.11(8)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.49(1)$	$\mathrm{C}(6)-\mathrm{H}(63)$	$1.04(8)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.53(1)$	$\mathrm{C}(8)-\mathrm{H}(81)$	$0.84(9)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.50(1)$	$\mathrm{C}(8)-\mathrm{H}(22)$	$0.96(7)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.40(1)$	$\mathrm{C}(8)--\mathrm{H}(83)$	$1.04(8)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.36(1)$		

Table 5. Intramolecular bond angles (${ }^{\circ}$)

$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(1^{1}\right)$	$180 \cdot 0$
$\mathrm{~N}(3)-\mathrm{Cu}-\mathrm{N}\left(3^{1}\right)$	$180 \cdot 0$
$\mathrm{~N}(3)-\mathrm{Cu}-\mathrm{N}(1)$	$90 \cdot 5(2)$
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(3^{1}\right)$	$89 \cdot 5(2)$
$\mathrm{Cu}--\mathrm{N}(1)-\mathrm{C}(3)$	$127 \cdot 9(4)$
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)$	$107 \cdot 4(4)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	$124 \cdot 6(5)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	$125 \cdot 5(6)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{H}(2)$	120
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{H}(2)$	114
$\mathrm{~N}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	$120 \cdot 6(6)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$121 \cdot 3(6)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$118 \cdot 1(5)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	$120 \cdot 8(6)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{O}(2)$	$123 \cdot 1(5)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(4)$	$116 \cdot 1(6)$

$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	$121 \cdot 0(6)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(3)$	$119 \cdot 8(5)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$119 \cdot 2(6)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$114 \cdot 0(5)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	$110 \cdot 3(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$116 \cdot 9(6)$
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	$114 \cdot 0(6)$
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(9)$	$120 \cdot 8(4)$
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(13)$	$120 \cdot 1(4)$
$\mathrm{C}(9)-\mathrm{N}(3)-\mathrm{C}(13)$	$119 \cdot 1(6)$
$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	$122 \cdot 3(6)$
$\mathrm{N}(3)-\mathrm{C}(13)-\mathrm{C}(12)$	$121 \cdot 1(6)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$118 \cdot 6(7)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119 \cdot 0(7)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$119 \cdot 9(6)$

Environment of the copper atom

The four nitrogen donor atoms are arranged in a square-planar configuration about the copper atom, the bond angles $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)$ and $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(3^{1}\right)$ being 90.5 (2) and $89.5(2)^{\circ}$ respectively. The $\mathrm{Cu}-\mathrm{N}(3)$ distance is 2.032 (5) \AA, only very slightly longer than

Table 6. Least-squares planes
The equations of the planes are expressed in orthogonalized space as $P I+Q J+R K=S$.

Plane I: through atoms $\mathrm{Cu}, \mathrm{N}(1), \mathrm{N}(3), \mathrm{N}\left(1^{\mathrm{i}}\right), \mathrm{N}\left(3^{\mathrm{i}}\right)$
Equation: $0.04272 I-0.23816 J+0.97028 K=0.00$
Plane II: through the six pyrimidine ring atoms, $\mathrm{C}(3), \mathrm{N}(1)$, $\mathrm{C}(1), \mathrm{N}(2), \mathrm{C}(2)$ and $\mathrm{C}(4)$.

Equation: $-0.63299 I+0.76268 J+0.13278 K=0.24309$
Atoms included Dist. from Atoms not included Dist. from in calculation plane (\AA) in calculation plane (\AA)

$\mathrm{C}(3)$	-0.043	$\mathrm{O}(3)$	-0.127
$\mathrm{~N}(1)$	-0.031		
$\mathrm{C}(1)$	0.044	$\mathrm{O}(1)$	0.097
$\mathrm{~N}(2)$	0.024		
$\mathrm{C}(2)$	-0.094	$\mathrm{O}(2)$	-0.296
$\mathrm{C}(4)$	0.100		

Angle of intersection of planes I and II: $85 \cdot 42^{\circ}$.
Plane III: through the six pyridine ring atoms, $\mathrm{C}(9), \mathrm{C}(10)$, $\mathrm{C}(11), \mathrm{C}(12), \mathrm{C}(13), \mathrm{N}(3)$

Equation: $0.58073 I+0.71496 J-0.38934 K=-0.02245$
Atoms included Dist. from Atoms not included Dist. from in calculation plane (\AA) in calculation plane (\AA)

$\mathrm{C}(9)$	-0.003	$\mathrm{H}(9)$	-0.114
$\mathrm{C}(10)$	0.007	$\mathrm{H}(10)$	0.002
$\mathrm{C}(11)$	-0.002	$\mathrm{H}(11)$	-0.037
$\mathrm{C}(12)$	-0.007	$\mathrm{H}(12)$	-0.015
$\mathrm{C}(13)$	0.011	$\mathrm{H}(13)$	-0.031
$\mathrm{~N}(3)$	-0.006	Cu	0.022

Angle of intersection of planes I and III: 58.45°
Angle of intersection of planes II and III: 82.76°.
Plane IV: through the trioxopyimidine ring atoms $\mathrm{C}(3), \mathrm{N}(1)$: $\mathrm{C}(1), \mathrm{N}(2), \mathrm{C}(2), \mathrm{C}(4), \mathrm{O}(1), \mathrm{O}(2), \mathrm{O}(3)$.

Equation: $-0.59364 I+0.78876 J+0 \cdot 15955 K=0.36558$
Atoms included Dist. from
in calculation plane (\AA)

$\mathrm{C}(3)$	-0.004
$\mathrm{~N}(1)$	-0.056
$\mathrm{C}(1)$	0.012
$\mathrm{~N}(2)$	0.055
$\mathrm{C}(2)$	0.007
$\mathrm{C}(4)$	0.210
$\mathrm{O}(1)$	0.006
$\mathrm{O}(2)$	-0.146
$\mathrm{O}(3)$	-0.085

Angle of intersection of planes II and IV: 3.11° Angle of intersection of planes I and IV: $86 \cdot 70^{\circ}$.
Plane V: through atoms $\mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(8)$ of the diethyl group and atom C(4)

Equation: $-0.58613 I-0.54894 J+0.59592 K=-2.48933$
Atoms included Dist. from
in calculation plane (\AA)

$\mathrm{C}(4)$	-0.018
$\mathrm{C}(5)$	-0.020
$\mathrm{C}(6)$	0.020
$\mathrm{C}(7)$	0.016
$\mathrm{C}(8)$	0.003

Angle of intersection of planes II and V: 88.2°.
the corresponding distance, $\mathrm{Cu}-\mathrm{N}$, of 1.989 (6) \AA in the complex trans-bis[(chloroacetato)-(α-picoline)] copper(II) (Davey \& Stephens, 1971). Of interest is the $\mathrm{Cu}-\mathrm{N}(1)$ distance of 1.983 (5) \AA. As no similar com-
pounds containing copper bound to a barbiturate through the nitrogen atom are known, this distance may be compared with the analogous $\mathrm{Co}-\mathrm{N}$ and $\mathrm{Zn}-\mathrm{N}$ distances [2.020 (3) and 2.009 (2) \AA respectively] found in the complexes $\mathrm{M}(\mathrm{II})$ (barb) $)_{2}$ (imidazole) $)_{2}$. The plane through atoms $\mathrm{Cu}, \mathrm{N}(1), \mathrm{N}(3), \mathrm{N}\left(1^{\mathrm{i}}\right)$ and $\mathrm{N}\left(3^{\mathrm{i}}\right)$ has been labelled plane I. Two further exocyclic barbiturate oxygen atoms $\mathrm{O}(1)$ and $\mathrm{O}\left(1^{1}\right)$ are $2 \cdot 723$ (5) \AA from the copper atom above and below plane I. They therefore appear to be involved in off-the-z-axis coordination (Fig. 2), which is also found in the complexes diacetatodiammine copper(II) (Siminov, Ablov \& Malinovskii, 1963) ($\mathrm{Cu} \cdots \mathrm{O} 2.77 \AA$) and trans-bis[(chloroacetato)(α-picoline)]copper(II) ($\mathrm{Cu} \cdots \mathrm{O} \quad 2.707 \AA$) (Davey \& Stephens, 1971). Atoms $\mathrm{O}(3)$ and $\mathrm{O}\left(3^{\mathrm{i}}\right)$, exocyclic barbiturate oxygen atoms, lie at a distance of $3 \cdot 234$ (7) \AA from the copper atom, just less than $3.4 \AA$, the sum of the van der Waals radii of copper and oxygen. Thisfurther interaction, if present at all, is probably much weaker than the $\mathrm{Cu} \cdots \mathrm{O}(1)$ interaction. All distances and angles involving the copper coordination sphere are listed in Table 7. Considering the normal to the $\mathrm{Cu}, \mathrm{N}(1), \mathrm{N}(3)$ plane as the 'tetragonal' axis, z, for the complex (Fig. 2), then the angle between the 'out of plane' $\mathrm{Cu}-\mathrm{O}(1)$ direction and the z axis is 35.7°. The analogous angle found in the complex trans-bis-

Fig. 4. The conformation of the trioxopyrimidine ring. The dotted line is a trace of the best least-squares plane through the six ring atoms only (plane II). The vertical scale is approximately three times the horizontal scale.

Fig. 5. The [010] projection of the structure. Intermolecular hydrogen bonding is represented by dotted lines.
[(chloroacetato)-(α-picoline)]copper(II) has a value of $36 \cdot 1^{\circ}$.

Table 7. Interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ and their e.s.d.'s. in the copper coordination sphere

$\mathrm{Cu}-\mathrm{N}(1)$	$1.983(5)$	$\mathrm{N}(3)-\mathrm{Cu}-\mathrm{O}(1)$	$90 \cdot 4(2)$
$\mathrm{Cu}-\mathrm{N}(3)$	$2.032(5)$	$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}(1)$	$54.3(2)$
$\mathrm{Cu}-\mathrm{O}(1)$	$2.723(5)$		
$\mathrm{N}(3)-\mathrm{O}(1)$	$3.409(7)$	$\mathrm{N}\left(3^{\mathrm{i}}\right)-\mathrm{Cu}-\mathrm{O}(1)$	$89.6(2)$
$\mathrm{N}(1)-\mathrm{O}(1)$	$2.247(7)$		
$\mathrm{N}\left(3^{1}\right)-\mathrm{O}(1)$	$3.386(7)$		
$\mathrm{N}\left(1^{1}\right)-\mathrm{O}(1)$	$4.200(7)$		
$\mathrm{N}(1)-\mathrm{N}(3)$	$2.850(7)$		
$\mathrm{N}(1)-\mathrm{N}\left(3^{\mathrm{i}}\right)$	$2.827(7)$		

Fig. 6. Schematic drawing of the geometry of the intermolecular hydrogen bond. The bond drawn is that between a molecule at x, y, z (upper ring) and a molecule at $x, \frac{1}{2}-y, \frac{1}{2}+z$ (lower ring, superscripts ii).

In the pyridine moiety, the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths are within the expected ranges. The average $\mathrm{C}-\mathrm{H}$ distance is $0.98 \AA$. The greatest deviation from the least-squares plane through the six pyridine ring atoms is that of atom $\mathrm{C}(13), 0.011 \AA$; (see Table 6). This plane has been labelled plane III. Planes I and III intersect at an angle of 58.45°.

The barbital ligand structure

In Fig. 3, a comparison is drawn between the bond lengths and bond angles in the system M-barb in the two complexes $\mathrm{Cu}(\text { barb })_{2}$ (pyridine) $)_{2}$ investigated here, and Zn (barb) $)_{2}$ (imidazole) ${ }_{2}$. Generally there is good agreement among these parameters. Of interest is the bond angle $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$. On comparison of the parent barbituric acid with the barbital ion in the sodium salt, it was found (Berking \& Craven, 1971) that as a result of deprotonation, the internal ring angle at $\mathrm{N}(1)$ closes from 126.4° in barbital to $119 \cdot 2^{\circ}$ in its ion. In the complex reported here, the angle $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$ is 124.6° which is close to the corresponding angle in the protonated barbital molecule $\left(126 \cdot 4^{\circ}\right)$; thus, on chelation of the barbital ion through atom $N(1)$, the angles around $\mathrm{N}(1)$ and its neighbouring ring carbon atoms in $\mathrm{Cu}(\mathrm{II})$ (barb) $)_{2}$ (pyridine) ${ }_{2}$ revert from the values in the barbital ion to values close to those found in the barbital molecule, as expected.

The conformation of the trioxopyrimidine ring is shown in Fig. 4. The dotted line is a trace of the best least-squares plane through the six ring atoms (plane II). The exocyclic oxygen atoms have been included in the figure; the puckered conformation of the ring is evident.

Atoms $C(5), C(6), C(7), C(8)$ together with atom $C(4)$ form a hydrocarbon chain which is almost perpendicular $\left(88.2^{\circ}\right)$ to the pyrimidine ring plane. The hydrogen atoms of the diethyl group are in the staggered configuration.

Planes I and IV intersect at $86 \cdot 7^{\circ}$ i.e., the plane Cu , $\mathrm{N}(1), \mathrm{N}(3)$ and the trioxopyrimidine ring plane are almost perpendicular. Two relatively close intramolecular approaches may be mentioned. These are $\mathrm{O}(3) \cdots \mathrm{H}(9), 2 \cdot 59(6) \AA$, and $\mathrm{O}(3) \cdots \mathrm{H}\left(13^{\mathrm{i}}\right), 2 \cdot 56(7) \AA$, involving an exocyclic oxygen atom of the barbiturate ring and H atoms of the pyridine ring. These distances are close to the well-established $\mathrm{O} \cdots \mathrm{H}$ van der Waals sum of $2.6 \AA$.

From the analysis of the complex Zn (II) (barb) $)_{2}$ (imidazole) $)_{2}$, it was concluded that the configuration of the barbiturate and imidazole ligands is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions involving carbon atoms of imidazole and carbonyl oxygen atoms of barbital at a $\mathrm{C} \cdots \mathrm{O}$ distance of $3.02 \AA$. The $\mathrm{H} \cdots \mathrm{O}$ distance is 2.37 (3) \AA. In imidazole, the methine group involved is flanked by ring nitrogen atoms which may enhance the acidity of the hydrogen atom and favour a C-H...O interaction. In the present study, it was found that the distances $\mathrm{C}(9) \cdots \mathrm{O}(3)$ and $\mathrm{C}\left(13^{\mathrm{i}}\right) \cdots \mathrm{O}(3)$ are both large, so that attractive $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions in the
complex $\mathrm{Cu}(\mathrm{II})(\text { barb })_{2}$ (pyridine) ${ }_{2}$ do not appear to be present. This is another factor (in addition to coordination type) which contributes to the small differences in the barbital ligands in the copper and zinc complexes (Fig. 3).

Intermolecular structure

The structure is dominated by intermolecular hydrogen bonding of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$. There is only one crystallographically distinct hydrogen bond, $\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{O}\left(3^{\text {ii }}\right)$ and this links adjacent barbital moieties in a zigzag pattern parallel to \mathbf{c}. This is shown in Fig. 5, the [010] projection of the structure. There are thus four hydrogen bonds emanating from each molecule; two of these bonds link any two adjacent molecules.

The geometry of the interaction is shown in Fig. 6. The distances $\mathrm{N}(2) \cdots \mathrm{O}(3), \mathrm{N}(2) \cdots \mathrm{H}(2), \mathrm{H}(2) \cdots \mathrm{O}(3)$ are in good agreement with the corresponding distances in hydrogen-bonded systems in compounds containing donor ring-NH groups and acceptor carbonyl oxygen atoms (Donohue, 1968). The [001] projection, which shows no intramolecular overlap, is illustrated in Fig. 7.

All computations were performed on a Univac 1106 computer system.

This work was supported by the C.S.I.R. and the University of Cape Town's research grants.

References

Berking, B. (1972). Acta Cryst. B28, 98-113.
Berking, B. \& Craven, B. M. (1971). Acta Cryst. B27, 1107-1115.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1963). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Craven, B. M., Vizzini, E. A. \& Rodrigues, M. M. (1969). Acta Cryst. B25, 1978-1993.
Davey, G. \& Stephens, F. S. (1971). J. Chem. Soc. (A), pp. 1917-1920.

Fig. 7. The [001] projection of the structure.

Donohue, J. (1968). Structural Chemistry and Molecular Biology, pp. 443-465. San Francisco: Freeman.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Levi, L. \& Hubley, C. E. (1956). Anal. Chem. 28, 15911605.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Siminov, Y. A., Ablov, A. V. \& Malinovskil, T. I. (1963). Kristallografiya, 8, 270.
Wang, B. C. \& Craven, B. M. (1971). Chem. Commun. pp. 290-291.
$X-R A Y$ (1972). X-RAY System, version of June 1972, Technical Report TR-192 of the Computer Science Center, Univ. of Maryland, June 1972.

